Fractal behavior of soil water storage at multiple depths

نویسندگان

  • Wenjun Ji
  • Mi Lin
  • Asim Biswas
  • Bing C. Si
  • Henry W. Chau
  • Hamish P. Cresswell
چکیده

Spatiotemporal behavior of soil water is essential to understand the science of hydrodynamics. Data intensive measurement of surface soil water using remote sensing has established that the spatial variability of soil water can be described using the principle of self-similarity (scaling properties) or fractal theory. This information can be used in determining land management practices provided the surface scaling properties are kept at deep layers. The current study examined the scaling properties of sub-surface soil water and their relationship to surface soil water, thereby serving as supporting information for plant root and vadose zone models. Soil water storage (SWS) down to 1.4 m depth at seven equal intervals was measured along a transect of 576 m for 5 years in Saskatchewan. The surface SWS showed multifractal nature only during the wet period (from snowmelt until midto late June) indicating the need for multiple scaling indices in transferring soil water variability information over multiple scales. However, with increasing depth, the SWS became monofractal in nature indicating the need for a single scaling index to upscale/downscale soil water variability information. In contrast, all soil layers during the dry period (from late June to the end of the growing season in early November) were monofractal in nature, probably resulting from the high evapotranspirative demand of the growing vegetation that surpassed other effects. This strong similarity between the scaling properties at the surface layer and deep layers provides the possibility of inferring about the whole profile soil water dynamics using the scaling properties of the easy-to-measure surface SWS data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forms and functions of meso and micro-niches of carbon within soil aggregates.

Soil aggregates include sand/silt/clay, water, ion and organic matter contents combined with natural dry/wet (D/W) cycling alters both the formation and function of intra-aggregate pore continuity, connectivity, dead-end storage volumes, and tortuosity. Surface aggregates in the 0-5 cm depths of most soils experience from 34 to 57 D/W cycles that exceed differences in water contents >10%. Both ...

متن کامل

Investigation of the Gravel Filters and Plastic Mulch Effects in Improving Soil Infiltration and Moisture Storage in Rainwater Harvesting Systems in Steep Lands

       In this study, the possibility of using a combination of gravel filters with plastic cover to increase water infiltration and soil moisture storage in rainwater catchment systems was investigated. For this purpose, five treatments (with three replications) including control treatment, vegetation removal with filter, vegetation removal without filter, semi-insulated system with filter, an...

متن کامل

Soil , snow , weather , and sub - surface storage data from a mountain catchment in the rain – snow transition zone

A comprehensive hydroclimatic data set is presented for the 2011 water year to improve understanding of hydrologic processes in the rain–snow transition zone. This type of data set is extremely rare in scientific literature because of the quality and quantity of soil depth, soil texture, soil moisture, and soil temperature data. Standard meteorological and snow cover data for the entire 2011 wa...

متن کامل

Modification of transient state analytical model under different saline groundwater depths, irrigation water salinities and deficit irrigation for quinoa

Salinization of soil is primarily caused by capillary rise from saline shallow groundwater orapplication of saline irrigation water. In this investigation, the transient state analytical modelwas modified to predict water uptake from saline shallow groundwater, actual cropevapotranspiration, soil water content, dry matter, seed yield and soil salinity under differentsaline groundwater depths, i...

متن کامل

Evaluation of the SALTMED model for sorghum under saline conditions in an arid region

SALTMED model has been developed to predict yield, soil salinity and watercontent under saline conditions. A two year field experiment was carried out during2012-13 to calibrate and validate the model for sorghum. Plants were irrigated withsalinity levels of 2, 6, 10 and 14 dS m-1. Results showed that there were significantdifferences between the observed and simulated sorghum dry matter (SDM) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016